Be careful what you ask for!

Zamboni 6 photo

Several months ago, a humorous request went out for a Zamboni that could be used on the Nerdy Derby track.

Last year the Milwaukee Makerspace held a Maker Fest and a Nerdy Derby track was made for the occasion. The design allowed the track to be disassembled in 4 foot long sections.

When the track was reassembled, earlier this year, for the South Side Chicago Maker Faire, it was found that the joints did not match up as well as when it was first put together. Small ledges, that went up and down, would cause the cars to bounce off the track or hit the bottom of the car. Both of these scenarios prevented the cars from traveling freely down the track.

As many of you know, we just had a GREAT Maker Faire here in Milwaukee last month and the Nerdy Derby track was needed again!

We produced, and ran, over 1000 Nerdy Derby cars over the 2 day event. Wow!

Zamboni 10 photo

A month or so before the event I started working on an idea for a Zamboni type of device. My first thought was of a custom contoured planer that could be used at each joint to smooth them out. This idea seemed like too much work so I proceeded forward with my second design. This consisted of a simple sled hat used a drum sander, which smoothed out the high spots. Wood putty was then used to fill in any low spots.

 

Milwaukee Maker Faire Preparations

We’re planning on setting up a Nerdy Derby track at the upcoming Maker Faire Milwaukee so to that end we are preparing car parts.  We recently received a generous donation of filament from Inventables (thank you!) so MegaMax and others went right to work printing wheels for the Nerdy Derby cars.  The goal is to print 4000 (!) wheels before the Maker Faire.

A small batch-test run of twelve wheels

A small batch-test run of twelve wheels

 

Printing 40 whimsical wheels and once!

Starting a batch: printing 40 whimsical wheels and once!

6 hours later, almost done!

6 hours later, almost done!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Video:

MegaMax printing 40 wheels in one go.  Go big or go home!

SnakeBite Extruder Works!

I repaired the Budaschnozzle hot-end over the weekend and bolted the SnakeBite extruder to it and then to MegaMax and tested it last night.  There’s plenty of tuning to do, but the first print looks promising:

 

Start of SnakeBite’s first print

 

More of SnakeBite’s first print

 

Not too pretty but it shows promise.

Not too pretty but it shows promise.

Electric Ice Scooter

DSC_0424

When I recently was at the thrift store and saw a pair of ice skates next to a kick-scooter, it got my mind going. “What would a scooter look like with skates in place of wheels!?”

The next time I was at the Makerspace, I saw my old electric scooter over on the Hack Rack. This was a scooter I originally rescued from a dumpster. Although it didn’t have batteries, just adding power and a little tinkering got it up and running again. A few of the EV Club and PowerWheels Racing guys played around with the scooter a bit, but eventually the controller got toasted, and who knows what happened to the front wheel.

Oh well, I’d be replacing that front wheel with an ice skate anyways.

Turns out that the heel of an ice skate is actually sturdy enough to drill right through and use as a mounting point. I simply  drilled through the skate, inserted a spacer, and then ran a 3/8″ bolt through the skate and the front fork of the scooter. I finished it off with a couple of washers and a nut.

Then next thing to fix was to get the  motor going again. Turns out that it’s a brushless motor. While I have a fair amount of experience now with BRUSHED motors, this was my first experience with brushless. I did a little research, and then ordered a 24V, 250 watt generic brushless controller from a mail-order scooter parts company. Unfortunately, it used a different style of throttle than what was already on the scooter, so I had to order a throttle to match.

Connecting the controller was pretty easy, three wires to the motor and the black and red one to power. I first bench-tested it with an old printer power supply, and once everything was working right, bit the bullet and bought a brand new pair of 12ah SLA batteries. The two batteries are wired in series, along with a 20 amp fuse, and then go to the controller.

I still needed a deck for the scooter. I dug through some scrap materials and found a pair of cabinet doors that were about the right size. I cut them down just a bit and bolted them to the scooter. I even re-mounted a cabinet door handle to have as an attachment point for towing a sled.

With that, I was ready to go for a test ride, so it was off to the lake. Once I was on the ice, I turned on the scooter and gave it a go! What fun! It really zipped along, but it was almost impossible to steer, as the back tire would slip right out from under me! Time for more traction!

I decided to make a spiked tire. I removed the rear wheel, then disassembled the two-part rim and removed the tire and inner tube. I stuck 1/2″ self-tapping, pan-head, sheet-metal screws through the tire from the inside, so that their points stuck out.DSC_0394 I evenly spaced out 24 screws and alternated them to be slightly off-center side to side. Next, I put some old scrap bicycle inner tube over them as a liner to protect the scooter tire inner-tube. After that, it was just a matter of reassembling everything.

Now for test #2 out  on the ice. Remembering how much it hurt to fall on the ice, I was prepared this time by wearing my motorcycle jacket (which has padding built-in) and my helmet. Good thing too, as I would learn while steering with one hand and holding a GoPro camera in the other…. (Note to self, keep both hands on handlebars at all times.)

Overall, the Ice Scooter works great! I still have a few little things to do on it. For example, the motor is running “sensor less”, and I’d like to learn about how brushless motors use the sensor system. I’d also like to get a small 24V dedicated charger. As it is right now, I have to remove the deck and manually charge with a little 12V charger.

From thrift store idea, to hack rack, to life on the ice, it’s always fun to see what you can do with just a little ingenuity. I hope you like this project. If you want to see more on it, please check out the write-up I did on Instructables. It’s even in a few contests there, and I’d love your vote!

Keep on Making,

-Ben

Our 4′ X 8′ CNC Router takes a step forward!

With a lot of hard work from Ed H. and Steve P. our 4′ x 8′ CNC router has achieved a milestone, instead of the X axis sitting on the ground it has taken a leap up and is now mounted, ready for the Y and Z axis to be mounted to it along with the electronics and motion control.

beam mounted

The X-axis is ready to be milled here.

The X-axis is ready to be milled here.

Laser Cutter Venting System, Version 5.0

Sometimes solving one problem creates a few new ones! As part of the Laser Cutter Room Reconfiguration, the exhaust system got an upgrade. A new, bigger, more powerful fan meant we needed a new way to control it. The previous system (Version 4.0) was a simple on/off switch. That just wasn’t going to cut it for this industrial grade blower. Tom G., Tony W., myself and others spent the holidays installing this new two-horsepower beast above the ceiling in the Craft Lab. Once it was hung from the roof joists with care, Tom got to work ducting it over to the Laser Cutter Room. Finally, when all the heavy lifting had been done and the motor drive had been wired up, all we needed was an enclosure for the switch.

The request went out on the message board. Pete P., Shane T., and I all expressed interest, but life got in the way and it soon became a matter of whomever got to it first would be the one to make it. I ended up devoting the better part of last weekend to this project (much more time than I anticipated) but I can honestly say I’m pretty happy with the result.

LCEC01

The goal was fairly straight-forward: make an enclosure for the switch Tom had already provided. It was a color-coded, 4-button, mechanical switch that had been wired to provide four settings: OFF, LOW, MEDIUM, and HIGH. The more laser cutters in use, the more air you’d need and the higher the setting you should choose. There’s four duct connections available for the three laser cutters we currently have.

There’s a saying: “Better is the enemy of done.” Truer words have never been spoken in a makerspace.

At first I wanted to build the enclosure out of acrylic. Then I remembered this awesome plastic bending technique that Tony W. and some others told me about. I found a video on the Tested website and got inspired. (If you don’t know about Tested, please go check it out. You’ll thank me later.) Unfortunately, my bends kept breaking and melting through, so after a few hours of tinkering I moved on.

Thankfully, we have a small cache of plastic and metal project enclosures on our our Hack Rack. I managed to find a clear plastic, vandal-proof thermostat guard. It looked workable.

I tried laser cutting it, but the moment I saw the plastic yellow and smoke, I knew there was probably some nasty, toxic stuff in it, so I moved to the CNC router. About an hour later I had my holes cut.

Then came the wiring. Up until this point I had been focused on the control box itself. Now I wanted to add a light!

No, two lights! Yeah!

One light to tell you when everything was off, and another that lit whenever the fan was in use. People could look at the lights from outside the room and instantly know if the fan had been left on. (It should be noted that the new fan, despite being twice as powerful than our last, is actually much quieter. Tom added a homemade muffler to the inlet of the blower and shrouded the whole contraption in 3″ fiberglass batt insulation. The best way to know if the fan is running is to open a slide gate damper and hear air being sucked in.)

OK, I totally got this.

Draw myself a ladder diagram and get out the wire connectors… Remember that I need to isolate the signals from each other so any button doesn’t call for 100% fan… A few more relays… Some testing… and done!

Wait a second… the motor drive doesn’t have a ground for the control signal.

Hmm.

Guess I can’t power it from the drive. I’ll just tie into the drive’s ground. Nope, that didn’t work.

I’ll read the motor drive manual. OK, it has a set of “run status” contacts I can monitor.
….and they’re putting out a steady 0.4 volts DC. That’s enough to light up a single LED! …except, no. It’s not lighting. Doesn’t seem to be any real current.

I’ll just use a transistor! That’s the whole point of a transistor!
….well nothing I tried worked.

I’ll build a voltage multiplier circuit!
….and this isn’t working either.

On Day 3 of this “little project” Ron B. made a comment about using a pressure switch of some kind.

Wait.

We have a Hack Rack full of junk and I know there’s this old bunch of gas furnace parts. It couldn’t be that easy…

LCEC02

Yeah. So, three days (and a few frustrating epiphanies) later, this all came together. Press the beige button, get some air. Press the other buttons, get some more air. Any time there’s suction, the red light comes on. The indicator light is powered by its own 24 volt DC wall pack. The pressure switch has both normally open (N.O.) and normally closed (N.C.) contacts so it would be totally feasible to add another light at some point. The controller could display “OFF” or “SAFE” or whatever as well as “ON” or “FAN IN USE” or whatever. The text is just a red piece of paper with words printed on it, then holes laser-cut out to fit. We can trade it out with different words or graphics if we ever feel the need. I was just glad to have it done, so I called it. Better is the enemy of done, indeed.

LCEC03

You can learn more about the evolution of our laser cutter venting system on our wiki!

Home Theater with Insane Subwoofer

After the mediocre commercial successes of some of my previous audio products, I decided to pursue a project that has absolutely no commercial potential.  Although my Automated Gmail Assistant had a 0.1% view to purchase rate, they definitely delighted their new owners!   On the other hand, my novel audio surround sound processor, audio-visual processor and audiophile headphones did not produce any revenue, despite being manufactured in an exclusive edition of one each.  Not to be discouraged, the goal of this project was to expand on the core idea behind the aforementioned audiophile headphones, but to overcome the main two drawbacks of using headphones:  1) Many people find that headphones are too uncomfortable and impractical for long term listening. And 2) most headphones lack the concert-like visceral bass impact, which is that feeling of the kick drum shaking your chest that only rock and roll shows could provide.

BIG_HMMMMMM2

Simply put, the Humorously Maniacal Milwaukee Makerspace Multimedia Machine (HMMMMMM) is a personal sized movie theater, with 5.16 surround sound.  That’s right, this theater is like a conventional 5.1 home theater, but with 15 extra subwoofers to delight the senses. While the bass in a live concert can be felt in your chest, the bass in the HMMMMMM can be felt in your soul(!).  In addition altering listener’s consciousness, the HMMMMMM will soon be used to screen our yet-to-be-filmed Milwaukee Makerspace orientation video as an integral part of our onboarding process for all new members. The HMMMMMM measures about 7 feet long and about 4 feet wide.  An eager movie-goer can simply climb up the integral stairs (shown on the left) and jump in through the 27” diameter escape hatch in the top of the HMMMMMM. Despite its crazy appearance, the HMMMMMM offers a surprisingly comfortable reclining position, much like that of a lazy-boy.  Check out this photo of the HMMMMMM under construction for a better idea of the ergonomic internal layout: There is a pillow for one’s head, and ones feet extend to the right.  The 27” display is mounted to the angled portion on the top surface, about 24” from the viewer.  Eventually, two 24″ monitors will expand the visual experience into the periphery.

The_Incomplete_HMMMMMM4

The audio portion of the HMMMMMM is a 5.16 system.  The high frequencies are played by 5 uninteresting Swan/HiVi speakers that are arranged in a properly boring 5 channel surround configuration.  The more exciting portion of the audio system is the subwoofer – well, the 16 (Sixteen) 10″ high efficiency subwoofers that provide that TrueBass™ sensation the masses crave.  Its clear from the use of 16 subwoofers that one object of the HMMMMMM was to create an audio system that plays low bass.  Playback of really low bass typically requires an extremely large speaker box, and still notes as low as 20 Hz are rarely audible.  However, inside any speaker box the bass response is naturally flat to much lower (subsonic) pitches.  For more on the sound pressure level inside and outside speaker boxes, check out this link.  The graph below is a measurement of the SPL or sound pressure level (how loud it is) versus frequency (pitch) at the listener’s ears in the HMMMMMM.

SPL_in_HMMMMMM

The graph shows that with a sine wave input, the SPL inside the HMMMMMM is 148.6dB at 40 Hz.  That means the acoustic pressure on the 27” diameter escape hatch is 45 pounds.  Excellent.  Note that earplugs in addition to earmuff style hearing protectors are mandatory to safely experience the TrueBass™.   To understand this strict hearing protection requirement, lets compare the sound pressure level inside the HMMMMMM to other audio systems that may be more familiar.  Note that the loudness of these other audio systems are not visible in the graph above, because essentially all other audio systems (including yours) are inferior.  Adjusting the margins of the graph a bit produces the following graph:

SPL_of_many_systemsThe plot shows how loud typical audio systems are, and how low they play.  For example, cellphone speakers play only a bit below 1khz, and are ~90 dB if they’re 40cm from you.  When a Jambox-type bluetooth speaker is about 60cm from you, it plays ~10 dB louder, and another 1.5 octaves lower, to 200 Hz.  Typical bookshelf speakers can get another 5 dB louder if you’re 1.5 meters from them, but only play down another octave to 100 Hz.  OEM installed car stereos are a big improvement, but they’re still not in the same league as the HMMMMMM.  Yes, the IASCA record holding car is louder than this, but it plays only from 50 Hz to 60 Hz, which isn’t even really bass.

Note that the difference in loudness between a cellphone and a car is 20 dB, while the HMMMMMM is 30 dB louder than a high-performing car stereo.  Also note that the frequency range of a piano, with its 88 keys, is about the same as a bookshelf speaker – a bit over 7 octaves.  Surprisingly, the subwoofer portion of the HMMMMMM has a 6 octave bandwidth, but it plays the 6 octaves you’ve never heard before!  The HMMMMMM plays 6 octaves below what your bookshelf speaker or Jambox calls bass. The HMMMMMM has a +/- 6 dB passband extending down to 2 Hz, with the output at 1 Hz being nearly still above the 120 dB “threshold of pain.”

Disclaimers: For safety, the big 2000 Watt amplifier that drives the HMMMMMM to its full potential is not available when the author is not present.  Ironically, the author has taught 75-100 people, the eager early HMMMMMM listeners, how to properly insert earplugs, meaning that the HMMMMMM is actually a learning tool for hearing safety! Finally, the author has some hesitancy in having the HMMMMMM reproduce recordings with 5 Hz content at 140 dB, because typical hearing protection has little effect at these unnaturally low frequencies.

PS:  Please don’t hesitate to contact me if you’d like to help with the video scripting, filming or editing.

MegaMax 3D printer lives!

After a year’s work designing, building, scrapping, redesigning, building, and working through software and firmware issues, the MegaMax 3D printer is now functional.   It has some common 3D printing issues like printed objects peeling up off the glass printbed.   Tweaked settings in Slic3r, ABS “juice”, and Aquanet hairspray have all been tested with moderate success in attempts to improve adhesion to the printbed.  Finally, have_blue gave me  a block of foam out of the Stratasys printer to try out and it seems to work better than the other methods and doesn’t require heating the bed!  Further experiments to be conducted post-haste.

More info on this project can be found here: http://wiki.milwaukeemakerspace.org/projects/megamax_3d_printer

MegaMax printing on foam from Stratasys printer.

MegaMax printing on foam from Stratasys printer.