Awesomeness in the Making – it’s the Holiday Make-A-Thon

holidayMakeathonBanner

Since 2010 Milwaukee Makerspace has partnered with Bucketworks to host a Holiday Make-A-Thon on the Friday following Thanksgiving. What do we do at the Make-A-Thon? We make things of course, but more importantly we make things for the holidays and help children of all ages make holiday items for gifts, decorations or donations.

Typically this event was held at Bucketworks. In 2013 Bucketworks was moving into their new space so the event was held at the Milwaukee Makerspace in Bayview.

The question for 2014 is “where are we going to hold the Holiday Make-A-Thon” or is it Make-A-Thons?

The answer is we can have multiple Make-A-Thons at different locations, hosted by different groups on the same day.

Please join us for the Holiday Make-A-Thon happening at the Milwaukee Makerspace and the Mini Make-A-Thon happening at UberDork Cafe on Friday November 28th, 2014 from 1:00pm to 6:00pm.

This event is competely free and we ask for donations to help cover the cost of materials.

Activities
Some of these are tentative and will rely on people to volunteer to make them happen!

  • Decorate a laser-cut ornament
  • Design a laser-cut ornament
  • Learn to solder a tie-pin
  • Design & 3D print a cookie cutter
  • Make a necklace / bracelet
  • Make a rose pin
  • Decorate your own gift wrapping paper
  • Fold a paper diamond ornament
  • Make a woodcut print

Refreshments
Want to bring something delicious to share? Please do!

  • Cookies
  • Pie
  • Leftovers!

A phone with a frickin’ laser!

My recent acquisition of a Meade ETX-90 telescope with computer go-to system for locating objects in the sky got me thinking that it would be nice to have a system to locate objects in the sky when you’re looking through binoculars or a telescope that doesn’t have a computer and motors to drive it.  To that end I came up with the idea of mounting a green laser pointer, commonly used by astronomy nutz to point out objects in the sky to noobs, on a cell phone or tablet running a program such as Google SkyMap or Skeye.

sky laser all parts

CAD rendering of the parts

After much thought and a few prototypes I came up with a system that allows a laser to mount on a phone and that assembly to mount on a tripod, a handle, or a telescope.  The tube that holds the laser has adjustment screws to allow the laser to be aligned with the SkyMap on the phone.  It also has to slots that fit over standard gun sight rails.  On one side I have a phone/tablet bracket that has a gunsight rail and slides into the laser tube, and the other side can be used for a rail that mounts on a tripod or a handle.  Extra rails can be mounted on telescope tubes.  I haven’t yet designed a binocular mount, but will soon.

 

IMG_0388

Parts printing on MegaMax

I printed the parts on MegaMax with Octave fluorescent red filament (that’s why the colors vary in the photos- the flash apparently excites the fluorescence in the picture with the handle).   All the parts fit VERY tightly together but I included screw holes for extra security.  The phone/tablet mounts on the bracket using velcro tape.  I think it may be better to print or buy a cheap case to fit the phone than screw it to the phone/tablet bracket.  I’ll be posting the design files to Thingiverse shortly.

IMG_0409

Phone and laser mounted on handle

IMG_0404

Phone and laser on a tripod

 

 

#TinkerOn, my friends… #TinkerOn

To celebrate the National Day of Making we’re proud to share these great videos we made with the folks at Liquid Wrench for their Tinkernation web site. Big thanks to Tom, Audrey, and Tiffany for being the voice of Milwaukee Makerspace, and to all the other members involved and our pals at Pumping Station: One in Chicago who run the Power Racing Series.

Warning: The videos range from fun to educational to a little ridiculous. Enjoy!

SnakeBite Extruder Works!

I repaired the Budaschnozzle hot-end over the weekend and bolted the SnakeBite extruder to it and then to MegaMax and tested it last night.  There’s plenty of tuning to do, but the first print looks promising:

 

Start of SnakeBite’s first print

 

More of SnakeBite’s first print

 

Not too pretty but it shows promise.

Not too pretty but it shows promise.

3D Printable Thermal Enclosure For 3D Printer

Well, OK, not the whole enclosure, just the parts that hold it together.

MegaMax can print big stuff but he’s had problems with large prints delaminating.  The answer seems to be enclosing the printer to keep the prints warm while printing.  I designed this box and 3D printable parts to hold it together so that I can take the box apart easily to work on MegaMax or move him to other locations and put it back together when I’m done.  The box is 38″ D x 28″ H x 32″ W.

box door open

 

 

 

 

 

 

 

 

 

 

box door closed

 

 

 

 

 

 

 

 

 

 

 

 

 

The box is made of 1″ PIR foam with corners suitably notched to accommodate the printed parts.  MegaMax has a 450 Watt heater in the printbed so the box gets super-toasty inside.  I suspect it gets a little too toasty but haven’t made any measurements yet.  I’ll soon be moving the electronics out of the box.  I didn’t do anything to seal the seams in the box because it doesn’t seem to be necessary.  I did tape the edges of some of the foam boards with clear packing tape to prevent damage.

Design and stl files are available at http://www.thingiverse.com/thing:269586

Snakebite Extruder Testing

rev7 extruder with hot-end

 

 

 

 

 

 

 

 

 

 

 

 

One of the biggest problems with FDM 3D printing is hot-end jamming.  There seem to be a lot of causes, most of which are not readily identifiable when a jam occurs.  One thing I have found is that after a hot-end jam I can usually grab the filament and manually push it and get it flowing through the hot-end again, though it is too late to save the failed print.  The most common means of driving the filament into the hot-end is to pinch the filament between a gear and a bearing and have a motor drive the gear, either directly (with 1.75mm filament) or via a gear reduction/torque multiplier arrangement (3mm filament).  When the hot end jams, the large force applied by the gear over the small area of the filament that is pinched between the gear and bearing usually chews a divot in the filament thus destroying the grip.

A couple weeks ago I started designing a 3mm filament extruder for 3D printing.  My hope is that this extruder will provide sufficient force on the filament to prevent hot-end jamming from ruining prints.  My design uses two counter-rotating 6-32 nuts twisting on the filament (like the way your hands twist in opposite directions when you give a “snakebite” to your friend) to drive it into the hot-end.  One is a normal, right-hand threaded nut, the other is left-hand threaded.  When the nuts turn in opposite directions, the torque that would try to twist the filament is cancelled while moving the filament forward and reverse without twisting.

The motor has to turn about 1.26 times to move 1mm of filament so there is a huge torque to axial force conversion.   The gear diameter is about 30mm.  That 1.26 rev moves the gear about 119mm at its perimeter.  That means there is about a 119:1 increase (ignoring losses in the gears, bearings, and nuts) in the force at the filament compared to the force at the gear.  That force is applied over a larger area of the filament than the usual pinch arrangement, so it is less likely (I hope!) to carve the filament and lose grip.  I tried stopping the filament by grabbing it with my fingers and holding as tightly as I could but it didn’t even slow down.

The firmware in the printer has to be tweaked so that it knows exactly how many steps of the motor are required to drive 1mm of filament.  The formula is:

32 rev/ 1 inch  X     1 inch /25.4 mm   X    200 steps/1 rev    X  16 microsteps/1 step   =  4031.496 microsteps/mm

For initial tests I just input 4031.5 using the rotary encoder on the LCD interface to the RAMPS board in MegaMax.

Here are the parts that I used:

Left hand threaded tap:  http://www.amazon.com/gp/product/B006YITGY8

5mm brass tubing:  http://www.ebay.com/itm/360828686174

5x16x5mm (625Z) bearings:  http://www.ebay.com/itm/321062568303

Plastic gears:  http://www.sciplus.com/p/PLASTIC-GEAR-SET-WITH-BUSHINGS_40234

I also used a NEMA-17 motor from a QU-BD extruder.

You can DL the STL files for the printed parts here:  http://www.thingiverse.com/thing:261037

Test printing will start in the next day or so and I will post another video showing success or failure.

Fingers crossed!

Further Adventures in CT Scan 3D Ego Printing

 

 

After a long series of manipulations, the CT scan derived  face was successfully used to make a pencil holder (of all things!).  It is about 100mm high and took about 9 hours to print.  You can find files that you can use to make your own mash-ups of my face on thingiverse: http://www.thingiverse.com/thing:203856

3 face cup 2

Successful CT scan processing into 3D printable file

Today was spent researching all the manipulations involved in getting a CT scan into printable form and I managed to get a print out of it.  The process starts with DeVide where the dicom data from the CT scan is processed using a dual threshold, decimation filter, and stl writer.  The stl file contains a lot of unwanted stuff, in this case, soft tissues inside my head that add triangles but won’t be seen in the print, so those are removed by applying ambient occlusion followed by selecting and deleting vertices by “quality” (which will be very low values for vertices on the interior of the object).  This process invariably blows small holes in the desired surface, so you apply a “close holes” filter to fix that (which closed up the nostrils very nicely).  Next you open the stl file in netfabb and rotate and clip unwanted external stuff and apply repairs as necessary.  Finally, drag it into slicer and scale it. slice and print.

First successful ego print!

First successful ego print!