Laser Cut Road Trip Coasters: Improved!

I used the Makerspace 60 Watt laser cutter to make coasters that show the path of some road trips I’ve taken.  That way I can enjoy the sweet irony of sitting on my couch enjoying a tasty beverage while having thoughts of travel!  This project was somewhat inspired by mmassie’s OpenPaths Zurich vacation keep sake project.

As I don’t use OpenPaths, I used Google maps to plot the course of past road trips, and simply took screen captures.  I wanted to create vector images with hairline width (0.001″) lines so the laser cutter can make each coaster in 45 seconds instead of 20 minutes. There are many ways to generate vector data using these raster .png images. I chose to semi-manually edit out unnecessary parts of the images using GIMP, and then used Inkscape to extract vector data from the resulting simplified images.  If you’re new to these tools, just search for “Inkscape raster to vector” tutorial videos.  An alternate approach is to just import the raster image into Inkscape, and use the Bézier line tool to trace the important paths.  Yes it is manual, but this alternate method also only takes 5 minutes to complete.

The coasters are cut from 3/16″ 4″ x 24″ solid basswood using fairly standard settings of 100% power, with 100% speed for etching, and 3.5% speed for cutting.

trio_s

I made quite a few coasters, and above is a photo of three of them. The coaster on top is a rail trip through Italy, the second is a 1000 km, 12 day (right hand) drive through Ireland, and the last is a much longer than 12 day road trip through the southwest – note the vertical and horizontal lines are the state borders of NV/NM/CO/UT.

A few days later, after polishing my vector editing skills in Inkscape, I made an improved version of the above three coasters.  I added circles to more clearly highlight each stop, and I etched the names of each stop on the reverse side of each coaster.  One group of raster to vector settings I used in Inkscape resulted in the creation of two sets of (closely spaced) hairlines for the outline of Italy, as shown in the coaster above.  I really liked how distinct the outline of Italy is relative to the path of the trip.  I chose to intentionally create two offset hairlines for the other country or border outlines, using Inkscape’s linked-offset path command.

Check out the new and improved design of the front, with dual country/border outlines and circles to denote the stops:

Three_Coasters_Front_Improved

Check out the reverse sides of these coasters shown below, with names of each stop etched on them. Albuquerque.

Three_Coasters_Back_Improved

Weekend Project: End Table

This weekend I made an end table for my living room.  Its in the style of two night stands I made, this one for the tool at hand contest, and this second one! The legs of this series of small tables are getting increasingly eccentric.  To build it, I started with three pieces of 2×12 lumber, and a 1/2″ diameter dowel rod.  I avoided using metal fasteners, and instead used only wood glue and 8 3″ long dowel pegs to attach the legs to ensure that sculpting the table with my chainsaw-blade-equipped angle grinder would be safe(r).  To save some labor with the grinder, I actually cut some of the zig-zag legs with a band saw first.  Even with the pre-cutting, I ended up making 1.5 cubic feet of wood chips and saw dust.

EndTable

Argyle Pattern Cutting Board

My latest cutting board is a based on a design I saw online.  It’s built around an argyle pattern that is often found on sweaters.

The first step is to glue a 1.5″ x 1.5″ pieces of poplar and red oak together in a 2 x 2 grid pattern. Additionally, one(1) red oak and two(2) poplar pieces are glues in a “L” shape. Each assembly is about 10″ long. Then, each assembly is sliced into 3/4″ pieces on the table saw or the chop saw. We need eight(8) of the 2×2 pieces and ten “L” shaped ones. The picture below shows the final intended layout.

11333941746_c7f285dcf9

In the next step, the hard maple borders are added. The following picture shows some of the earliest glue-ups.

11333924056_aa42343066

Then, the edges are trimmed and walnut is added to the outside. I chose to use a CNC router to flatten the cutting board surface.

11520122183_4211243a3a

I soaked the  board in mineral oil for 24 hours and finished with some butcher block conditioner and voila!

11520002395_08f7b29f08_b

Robbie is safely enclosed!

Finished room!

Whew.  This project was a D-O-O-O-ZY!  We needed to enclose our giant industrial arm so he can’t run away and join the robot circus…

Well…maybe not for THAT reason, but when we start cutting stuff with this robot, we need to keep spectators out of his reach and make sure that if a cutting bit does break, it doesn’t go flying out into the shop and maim someone.

This entire project was the work of several people and really shows why the Milwaukee Makerspace is a great place to build stuff/hang out with friends/play with power tools, etc…

———————————————————————————

Step 1: Design it!  I used Solidworks and modeled each and every piece of wood that went into this project.

SW screen capture

Step 2: get the wood!  We made multiple trips to Home Depot, which thankfully is only 5 minutes away and we had great weather during the whole building process.  I love having a truck!  Fortune also shined upon me, as we had a new member join up right before I started this project, Jake R., and his help in building the wall was immeasurable.

Get the wood!

Step 3: Bolt the wood to the floor so we know where to put the wall, and then build some framing!

  4 - put in windows

Step 4: Put in the windows, drywall paneling and metal wainscoting.  We were very lucky to get seven pieces of slightly-smoked Lexan from one of our members, Jason H.  We also cut small holes in the ceiling tiles and ran 4 braces up to the metal ceiling trusses above.  This enclosure is ROCK-solid stable!  Thanks to Tony W. and Jim R. for helping with that!

When I went to Home Depot, I thought my truck could handle a 48″x 120″ sheet of drywall.  Not so much… one of their employees helped me split 10 sheets of drywall in half, in the parking lot…so I would later find out that I did not have drywall tall enough for the wall corner.  Hence the need for more “framing” so I could use smaller pieces.

10 - outer framing

The large cabinet that powers the robot arm is right next to the enclosure; I placed it outside to keep it away from foam & wood shavings.  However, we will need to have the programming pendant next to the machine every now and then….hence the need for 2 small pass-thru doors next to the cabinet.

6 - hole for mini-door

11 - outer door installed

 

 

 

 

 

 

 

 

 

 

I used doweling to help hold the door frame components together…..probably not needed, but it ensures a STRONG door!

16 - drilling door frames  15 - door framing 1

Again, hooooray for the Makerspace and all its tools! We have several LONG pipe clamps that came in VERY handy for gluing the door frame pieces together.

17 - frame glued up - 1

Here’s the outside of the enclosure.  The big metal control cabinet will go right here, hence the framed “mouse hole” in the lower right corner so we can pass the cables through from the cabinet to the robot arm.

13 - outer door and mouse hole

The same area viewed from inside the enclosure.

14 - inner door and mouse hole

Here’s the ginormous sliding door.  It’s mounted on a barn-door track-rail and supported on the bottom by two custom-made wheel brackets.

23 - finished door on track

Here’s how I made the wheel brackets.  I got two lawnmower-style wheels and bearings from Tom G., then Tom K. enlarged the center holes on the wheels on his Bridgeport mill so I could use bearings for smoother action.

18 - wheels in slot - 1

I figured on four carriage bolts for a super-strong connection to the door frame.

19 - wheel assembly done

This is the track and wheel bogies that hold the sliding door to the wall.

22 - wheels and track

Bolting the brackets onto the door was “fun”…I forgot that the very bottom of the door framing is two horizontal pieces, so the very bottom bolt had to go.  ‘DOH!

21 - inside door frame 1

Here’s the final, assembled view.  You can see the robot’s control cabinet in the lower right corner.

Now that the fabrication is complete, we’re working on decorative ideas for all that blank-looking drywall.

24 - finished room!

Whenever I look at this finished project it feels like to took several months to get it up, even though construction only lasted about 2-1/2 weeks.

Thanks to Jake R., Tom G., Tom K., Tony W., Jim R., and Bill W. for their assistance with this project!