Sunday Morning Project – A 3D Printed WebCam Mount for a Telescope

I recently acquired a new eyepiece to replace the damaged one that came with the Meade ETX-90 telescope I bought at a swap meet last year.  I decided it needed to have a web-cam mount so I designed and printed one that is a variation of a previous design for a microscope.  It took about 20 minutes to recreate the CAD file in DesignSpark Mechanical, and about 90 minutes to print on Son of MegaMax.

This thing has an odd shape to accommodate the odd shape of the camera.  I designed the adapter in two pieces so it could be printed without any support material.  After printing the two pieces were glued together with a little super glue.

Unassembled 3D printed WebCam adapter and eyepiece.

Unassembled 3D printed WebCam adapter and eyepiece.

 

Assembled adapter on the eyepiece.

Assembled adapter on the eyepiece.

 

Telescope with WebCam mounted.

The adapter fits over the barrel of the 32mm fl eyepiece and stays put.

 

I shot a short video to test it and it works perfectly!  The cars driving by are about 1/2 mile away.

 

If we ever get a clear night I’ll try shooting Jupiter or Saturn and then run Registax to enhance the images.

Files are here:  https://www.youmagine.com/designs/web-cam-adapter-for-meade-telescope-eyepiece

QWERTY (and nothing else)

QWERTY Keyboard

I built a QWERTY keyboard that types the letters Q, W, E, R, T and Y, and nothing else. No space, no return, no escape.

It’s a fully-functional USB device, you know, as long as you just want to type words that can be composed with Q, W, E, R, T and Y. (WET, WRY, YET, TRY, there’s a bunch of them!)

I wrote plenty more about this project on my blog, and if you want to read about the history of the QWERTY layout, and its connection to Milwaukee, and why the way we interact with technology is interesting and sometime ridiculous, well… I got that too.

Member Badge Contest – Voting Open!

 

As announced in January, we had a Badge Contest that ran through April 21.  We had some great entries this year from our members.

Badge Contest Members

We had nine members show off their awesome badges at the meeting: Karen, Bill**2, Keith, Tom K., Kathy, Jon, Tom G., Brant & Carl

Now it’s the opportunity for everyone to vote and determine which badges they like the best!  Please view the badges and descriptions below, then click on the “VOTE HERE” link and select your favorite.

Several of the members submitted descriptions – please see them below.

Continue reading

Sometimes you gotta think outside the vase!

I found this nice vase on Thingiverse and printed it at 75% scale a couple weeks ago.

75% scale vase looks fine from this angle...

75% scale vase looks fine from this angle…

It came out pretty good except for the area near the bottom where it was overhanging.  3D printers don’t handle overhangs without support material very well.  I tried reslicing with support material added, but didn’t like the way it looked in either Cura or Slic3r so I didn’t try to print it again.

Overhang caused poor print quality for the first 6-8mm of the vase.

Overhang caused poor print quality for the first 6-8mm of the vase.

 

Then I tried printing it upside down- the overhang is much smaller.

100% scale vase printing upside down.

100% scale vase printing upside down.

About 12 hours later, here’s the result:  perfect!

The two vases, bottoms up- the 100% scale vase is perfect!

The two vases, bottoms up- the 100% scale vase is perfect!

 

 

 

 

 

 

 

 

 

 

 

 

 

Python Mode in Processing

I finally got around to using Python mode for Processing 2.x. I have used pyprocessing for 1.x in the past but the current version is supported by the official IDE. While I am not very good in either, I am more comfortable with Python over Java, Processing’s default language.

I create a few simple “sketches” to get used to the format. After comparison of a few animations in both languages, Python mode was noticeably slower – around 2-3 FPS versus > 15. I worked around this issue by saving each frame as an image and combining them with GIMP to make a .GIF animation. Here are a few sketch outputs – both static and dynamic.

moire_pattern

 

tesselated_triangles

 

 

CP2110 Breakout Board

cp2110_small

In following the internet chatter about the FTDI bricked-chip dust up some months ago I came across mention of a Silicon Labs USB-Serial chip, the CP2110, that worked a bit different. The device enumerates as a regular HID device and uses a standard OS driver rather than a manufacturer specific one. Being a HID device, there is no COM port. Instead you link a library into your application that knows how to engage the standard HID driver to talk to the chip in a serial-like fashion. In effect, this moves the driver from the OS to your application.

So I grabbed some of the chips and made up an OSHPark board that implemented the minimum passives and broke out the pins. Tonight, during Builder’s Night Out, I finally got around to soldering it up. The worst part about the CP2110 is that it is a 4mm x 4mm QFN with a 0.5mm pin pitch. I used the space’s 50W laser to make a solder paste stencil out of some of the giant roll of 3 mil mylar we have. My first go at it with one pass of the solder paste squeegee didn’t put down enough paste on the QFN and my second go with 3 or 4 passes in orthogonal directions put down too much solder paste.  There is probably a middle ground there.

Anyway, I used the space’s Zallus reflow toaster oven to reflow that second paste attempt and wound up with a number of the QFN pins shorted together. (I should have wiped the paste off and looked for that middle ground.) To fix the shorts I used the space’s hot air rework gun to pull the QFN chip off. That allowed me to solder wick the pads to a point free of shorts and then use the hot air gun once again to put the chip back. I over heated and burnt the tantalum caps and the LEDs in that rework process. So I used the hot air gun to remove those components and then hand soldered replacements back on to the board.

The moment of truth came when I plugged the freshly soldered board into my laptop’s USB port. I fully expected it to say “over current limit”, but to my delight it happily installed the HID driver! I’m looking forward to trying out the link library.

Son of MegaMax Lives!

MegaMax was a great 3D printer, but it was time for some changes.  He was difficult to transport because the electronics were in a separate housing with many cables to disconnect and reconnect, barely fit through doorways, and required a positively gargantuan enclosure to keep the temperature up to control ABS delamination.  Though it hurt to do it, I tore him apart and did a complete redesign/build into a form that is more like what I would have done had I known anything at all about 3D printing when I started building MegaMax.

I reused what I could including a lot of the 8020 extrusions in the frame, the Z axis screw assemblies and drive belt, and the X and Z axis motors.

Changes include:

  • ball screw drive Y axis with high torque motor- precise but noisy
  • linear guides in X and Y axes instead of 1/2″ round guide rails and linear bearings
  • SmoothieBoard controller instead of Arduino/RAMPS
  • BullDog XL extruder and E3D v6 hot end
  • RepRapDiscount graphic LCD control panel
  • narrower frame design without giving up print volume- easier fit through doorways!
  • polycarbonate panels to enclose the print area yet provide a clear view of the print
  • electronics in a drawer for easy service and transport and neater appearance
  • DSP motor drivers and 32V power supplies for X and Y axes
  • Liberal use of screw terminals to make servicing easier
  • Modular X and Y axes that can be removed for service and replaced in minutes.

SoM will be making his public debut at the Milwaukee Makerspace very soon…

Son of MegaMax electronics drawer

Son of MegaMax electronics drawer

Side view of Son of MegaMax

Side view of Son of MegaMax

 

Scrap Yard Success

Yesterday some of us went on a little field trip to a couple local scrap yards.  We met the people there and learned the ropes of how to do things right and not get hurt while digging for treasure in the piles of stuff they have laying around.  Wear gloves, old clothes, safety glasses, and sturdy shoes!  Stay away from moving cranes!

Here’s one of the discoveries from yesterday’s trip- explosion proof mercury vapor light fixtures:

A pallet full of explosion proof lamps at the scrap yard.

A pallet full of explosion proof lamps at the scrap yard.

And here’s what can be done with about an hour to figure out how to get it apart to remove the mercury vapor lamp and ballast and  clean it up a little.  Another 10 minutes went into installing the hardware, wiring, and a 6W LED bulb.  I wouldn’t call it finished yet- the base is crying out for installation of pipes to act as feet, a little more cleanup, and maybe a dimmer switch.  Total invested: $18 to get the fixture from the scrap yard, and another $12 for the hardware and LED bulb.

Explosion proof industrial lamp turned into table lamp.

Explosion proof industrial lamp turned into table lamp.