SAGA: Semi-Automatic Gmail Assistant

My friend Rob is a smart engineer, and throughout the course of a work week he receives dozens of requests for his assistance on various projects.  He’s such a positive and helpful person that he finds it difficult to say “No.” to any of these requests.  I’ve helped him out by making a USB device that can provide a clear and simple email response to some of these requests.  SAGA, or Semi-Automatic Gmail Assistant, is approximately the size of a mouse, and plugs into a computer just like any mouse or keyboard would.  Here is the first prototype:

SAGA comes complete with a key lockout feature that prevents accidental activation. Once a worthy email request has been received, Rob can calmly make the call whether or not to arm SAGA by inserting the key, and rotating it clockwise 90 degrees.  After rotating the key, an octagon of LEDs lights up around the chrome button, enticing Rob to press it.  The extra illumination from the LEDs also further highlights the artfully coiled wiring that fills the prototype SAGA.  When the button is pressed, SAGA sends the keyboard shortcut to respond to the email and types out “Go F*** Yourself.” at a respectable and slightly humorous 200 wpm.  After waiting a half second for dramatic effect, SAGA automatically sends the email.  Note that there is a 1% chance that SAGA will instead respond “That’s a Great idea, I’ll get right on it!”

SAGAis powered by a Teensy 2.0 and $15 of electronics parts.  SAGA appears to the computer as a standard keyboard, and some helpful startup hints I followed appear on RasterWeb! and here.  One enabling trick was using a 2n2222 NPN transistor to drive 140 mA into the eight LEDs (connected in parallel), as this value exceeds the current available from any one of the Teensy’s outputs.  Note that keyboard shortcuts must be enabled in Gmail settings, and that Yahoo! Mail is also SAGA compatible. Upon moving an internal jumper, SAGA is probably compatible with some versions of Outlook (although installation of service pack 3.0 may be required).

Due to popular request by the few folks who have seen SAGA in action, I’ve built up a few, and they are for sale now on Etsy.  Check out the aesthetically pleasing, high gloss powder coated aluminum enclosure! Here is SAGA in high-speed yellow:

Alternate colors are available too – Just follow this link to Etsy!  

Makerspace Aluminum Casting Foundry

I arrived at the Makerspace on Thursday without an idea of what I would cast in metal, and in less than two hours I was removing my piece from the steaming petrobond! Check out the fruit of two hours of labor cast in metal!

That’s right! The Milwaukee Makerspace had its first (and second) aluminum pour on Thursday! Thanks to the hard work of several members, the Makerspace now has a fully functional aluminum casting foundry.  The custom built propane and diesel powered furnace melted an entire #16 crucible of aluminum in less than 20 minutes.  Check out Brant’s video to see our fearless foundry foreman leading the two pours!

To get the foundry running quickly, we’ve started out by using a lost-styrofoam casting method.  That is, styrofoam is carved into the desired shape and then a sprue and vents are attached with hot glue(!).  This assembly is placed in a wooden form, and is surrounded by tightly packed petrobond, an oil bonded, reusable sand.   Then, the molten aluminum is poured directly onto the styrofoam sprue.  The styrofoam is instantly vaporized by the 1250 degree Fahrenheit aluminum, which fills the void in the petrobond formerly occupied by the styrofoam. The air and perhaps even some of the styrofoam residue escapes from the mold through the vents.  We’ll be phasing in bonded sand and lost wax casting soon, so stay tuned for those details.

Eventually we’ll be having aluminum casting classes; however, we’re definitely going to be having aluminum pours on alternate Thursday evenings for the next few months.  Join our mailing list / google group to get more details.  Metal pours are spectacular to watch, so feel free to stop by to see the action around 7 or 8 pm, or join the Makerspace and participate!

More Banned Nerdy Derby Cars!

I made the car “Sling Shot” to enter in the recent 2012 Milwaukee “Nerdy Derby.”  During a few initial test runs, my car proved to be more than 10 times faster than the super-clever winning car made by HaveBlue.  Unfortunately, my  car was banned from competition because it was considered a threat to the spectators’ safety!  The consensus was that it had “too much momentum, or energy,” and would hurt someone if it went off the track and hit them.  What does too much energy mean, you ask?  Well, kinetic energy is ½ X Mass X Velocity^2.  Really then, the car was banned because the velocity is too high: It is just too fast!  I’ve already minimized the mass by making the car out of pine, although I could have made it from Balsa Wood, or even entertaining alternate materials such as these.

Anyway, its no fun to think of how to slow Sling Shot down so that its slow enough to safely race, but still fast enough to win.  Instead, I made some new car prototypes that amp up the speed and danger.  If I’m going to be banned in the future, I may as well get banned with style!

Below is a photo of Sling Shot, which traveled the 40′ track length is 0.1 or 0.2 seconds, for an approximate average speed of 300 feet per second, or 200 mph!  Note that the block is anchored to the finish line, thereby stretching the surgical tubing which acts as a spring to propel the car.

I realized that the dominant energy loss mechanism is air resistance – largely because Sling Shot’s wheels don’t even touch the track.  You see, the car doesn’t follow the contour of the track, it just heads directly to the finish line, through mid-air.  I spent some time engineering a more aerodynamic shape to further boost Sling Shot’s speed, searching for a shape that would really slice through the air.  I even consulted a team of highly trained German aeronautical engineer friends, who all approved of my slingshot propelled Henckel Car.  With the improved aerodynamic design, it should easily be faster than the 200mph Sling Shot car shown above.

The other car I built this weekend is also based on Sling Shot, but incorporates some classy chandelier bulbs.  The numerous ‘safety’ lights alert the time keeper of the imminent arrival of the derby car – for safety.

Lasers + Whisky = Delightful Wedding Gift

One of our members got married yesterday, and I crafted a fine gift for him and his wife at the Makerspace.  The happy couple enjoys whisky, and I thought that providing a tour might be a nice idea.  The tour starts at inexpensive bourbon, moves through wheated whiskies, and on to rye. The tour continues in Scotland with some easy to enjoy Sherry cask finish bottlings, and then moves on to rare, Islay and finally mature bottlings (25 Year old Talisker!).

I found some old mohogany baseboard that had some aging varnish on one side and some old caulking on another.  After cutting two 18″ long sections, a few minutes of belt-sanding had them looking great.  I used a 1 1/4″ Forstner drill bit to bore 0.3″ deep pockets for the bottles to fit in.  I used one of our two laser cutters to etch the name/age/proof of each of the whisky sample on top, plus a congratulatory message on the reverse side.  To bring out the rich orangy-red mahogany color, I wiped on Beeswax / Mineral Oil .  Check it out close up, while imagining the symbolism of things getting better with age!

Nerdy Derby Car From The Future

I made the car “Sling Shot” to enter in the 2012 Milwaukee “Nerdy Derby” at Barcamp7 this weekend.  A lot of people were talking about adding motors and fancy electronics, but my car is powered by a spring – a 10 foot length of surgical tubing that is stretched to another block of wood that must be clamped down.  I added wheels, but they aren’t necessary – they don’t actually even touch the track.

Check out what may end up being the only two runs the car has.  Fortunately, JRock captured some video of them.  I’d estimate that the car took 0.1 or 0.2 seconds to travel the 40 foot length of the race track, giving an average speed of 300 feet per second (200 mph!).  The great part about this “sling shot” design is that the car is accelerated by the surgical tubing spring throughout the first 30 feet of the track – until the surgical tubing is completely unstretched.  “Beautiful!”