Snow-Globe Video

Just a minor update here from my recent Snow-Globe blog entry ( http://milwaukeemakerspace.org/2012/12/custom-snow-globe/ )

I made two VIDEOS about the snow-globe. The first is just a brief video showing the finished project. The second video is a longer “How-To” which includes some video, but is mostly a photo slide-show of all the steps I took to create the project.

For an in-depth step-by-step of how I built the project, check out the info I posted on Instructables. http://www.instructables.com/id/Custom-Singing-Snow-Globe/

-Ben

Arduino-Powered Surround Sound Synthesizer

The Makerspace Eight Speaker Super Surround Sound System(MESSSSS) has been supplying music to the Makerspace for quite a while now, but I identified a problem even before the system was fully installed.  Stereo recordings played back on two speakers are great if you’re in the “sweet spot.” If not, traditional approaches to 5.1 audio improve things, but all rely on there being a single “front of the room.” Unfortunately, it’s not clear which side of the 3000 square foot Makerspace shop is the front, and with four pairs of speakers in the room, even stereo imaging is difficult.

Fortunately, I’ve just completed the Makerspace Eight Speaker Super Surround Sound System’s Enveloping Surround Sound Synthesizer (MESSSSSESSS).  The MESSSSSESSS takes stereo recordings and distributes sound to the eight speakers in an entirely fair and user configurable way, thereby eliminating the need for a “front of the room.” Now listeners can be arbitrary distributed throughout a room, and can even be oriented in random directions, while still receiving an enveloping surround sound experience!

The MESSSSSESSS user interface is somewhat simpler than most surround sound processers, as it consists of only four switches and one knob.  Somewhat inspired by StrobeTV, the simplest mode references questionable quadraphonic recordings, in that the music travels sequentially from speaker to speaker, chasing around the room either clockwise or counterclockwise at a rate selected by the knob. With the flip of a switch, sound emanates from the eight speakers in a random order. Things get considerably less deterministic after flipping the Chaos Switch, adjusting the Chaos Knob, and entering Turbo Mode:  Its best to visit Milwaukee Makerspace to experience the madness for yourself.  I’m legally obligated to recommend first time listeners be seated for the experience.

The MESSSSSESSS is powered entirely by an Arduino Uno’s ATmega328 that was programmed with an Arduino and then plugged into a socket in a small, custom board that I designed and etched at the Makerspace.  The ATmega328 outputs can energize relays that either do or don’t pass the audio signal to the four stereo output jacks.  Care was taken to use diodes to clamp any voltage spikes that may be created as the relays switch, thus preventing damage to the ATmega328 outputs.

As shown by the minimal part count above, using the ATmega328 “off the Arduino” is quite easy:  Just connect pins 1 (The square one), 7 and 20 to 5 volts, and connect pins 8 and 22 to ground.  Then, add a 22uF cap and small bypass cap between power and ground, and a ceramic resonator to pins 19 and 20.  You can even use an old cellphone charger as the power supply.  Boom.  That’s it.  The real benefits of making your own boards are having a well integrated system, and cost, as the Atmel chip is $4.50 while a whole Arduino is $30.  Also visible in the photo are a programming header and the two ribbon cables that route all the signals to and from the board.

A Simple Aux Input For iPod Speaker Systems

The first generation of Bose SoundDocks did not feature an aux input jack, they are only compatible with the 30 pin connector of iPods and iPhones.  Lately, my music player of choice is my Droid Razr, which has 60+ Gb of music on it, even more in the cloud, and no 30 pin connector.  I decided to add an auxiliary input to my SoundDock in the easiest and quickest way possible. I made an adapter cable using half of a $6 iPod extension cable, half of a $1 3.5mm headphone cable, and two necessary resistors.  I can plug this adapter cable directly into any unmodified SoundDock, or any other amplified speaker system that has a 30 pin connector.

It turns out that the SoundDock is smart, and will only power on when it senses 3.3VDC on pin 18 of its input connector.  Luckily, it also outputs 12VDC on pin 19 to recharge the attached iPod’s battery.  To trick the SoundDock into turning on with no iPod attached, I made a voltage divider by soldering a 20 Kohm resistor between the wires connected to pins 18 and 19, and a 4.7 Kohm resistor between the wires connected to pins 18 and 1.  The voltage between pins 18 and 1 was measured to be ~3VDC, which isn’t 3.3VDC, but is sufficient to power up the SoundDock.  I soldered the three pins of the 3.5mm headphone jack to the 30 pin connector’s wires as follows: Ground to pin 1, right audio to pin 3 and left audio to pin 4.  I used 1206 surface mount resistors because they measure only 3.2mm by 1.6mm, a size which fits conveniently under the shrink wrap joining the two cables.  The most time consuming part of this two hour project was identifying which color wires were connected to pins 1,3,4,18 & 19, and determining if the pin on the left of the photo was #1 or #30.

Spring 2012 Gallery Night

Kevin's Noise Box
Kevin’s Noise Box (Photo by Pete Prodoehl).

On Friday April 20th, 2012, several members of the Milwaukee Makerspace participated in the Spring Gallery Night event hosted at BucketWorks and put on in collaboration with ArtWorks for Milwaukee.  Several hundred people came through the space to check out works from both groups.  ArtWorks also had a nice write-up of the night from their point of view. We love getting our crazy work out in front of people.

So, gentle Reader, I present to you an inventory of our Makers and Their Works:

  • Kevin Bastyr
    • The Mahoganator – A noise box encased in a lovely Mahogany shell.
    • The Cacophonator – A noise box encased in a lovely welded metal shell.
    • Cast bronze tree-trunk table.
    • Angle grinder table from the One Tool Competition.
  • Adam Cohen
    • Functional MagneTag prototype! Gallery night patrons were invited to run through the space playing MagneTag.
  • Jason Gessner
    • Step – A step sequencer controlled by a Dance Dance Revolution Controller, Processing and Logic Pro.
  • Matt Neesley
    • CNC Architectural Relief Sculptures.
  • Pete Prodoehl
    • The Arc-O-Matic! A one-armed, 2 servo-enabled drawing robot.
    • Wooden Knuckles and Wooden Nickels.
    • Other crafty 3D printed replacement parts and creations.
  • Vishal Rana
    • Laser Harp and Propane Tank Drum
  • Shane Thielen
    • The Eye Wooden Block Sculpture
    • Laser Printed Periodic Table of the Elements.

Check out Pete’s Time Lapse Bot footage of the event. I’m seen messing around with my laptop a lot until I settled on a sound set I liked for the Step.

In addition, the folks from the newly-forming Spring City Launchpad makerspace in Waukesha were there to get the word out.

And if that wasn’t enough, Jason H. had 2 of Pete’s Drawbots collaborating at the Art Milwaukee Wedding after party!

Big thanks to Tim @ Bucketworks and the folks at ArtWorks for sharing the space with us and inviting us to the festivities!

More photos of the night shot by Brant are available on Flickr.

Cacophonator Enters The RPM Challenge!

At Noon today, the Cacophonator decided to enter the RPM Challenge!  This challenge is simple: Compose and record an album entirely during the month of Februrary, be that 10 individual songs or a single 35+ minute track of original material!  After a thirteen second test, Cacophonator was proven to not be up to this challenge as a solo act – It’s just too loud.  Enter Mohoganator: The distortion reducing, level adjusting perfect partner for this challenge.

The Dynamic Duo of Cacophonator and Mohoganator teamed up with Auditionator (I.E. Adobe Audition) to record a session for 10 minutes and 32 seconds at a blazing fast 192kHz sample rate.  This recording was then slowed down to the customary rate of 44.1kHz, thereby expanding the work to its final 45.5 minute length.  Within twenty minutes after the recording was made, Cacophonator had a profile set up on the RPM Challenge site and the piece normalized, saved as a low bit rate mp3 and uploaded.  You’ve read that correctly, in less time than it takes to listen to this piece, it was composed, recorded, processed, mastered and uploaded.  Talk about Non-Causal Audio Delight!  Check out the piece here, by scrolling down to “my player.” This all happened very fast, but Cacophonator still isn’t quite finished – it hasn’t yet mailed a CD to RPM HQ, 10 Vaughan Mall, Suite 201 Portsmouth, NH 03801.  Interested participants still have over 11 days to enter the challenge!