“Retro Future” Remote Control

Disclaimer: This is a project I submitted to Instructables.com for two of their contests.

I’ve always loved the look and feel of the “world of tomorrow” we were presented in mid-century science fiction and concept products.

Okay, that’s not true. When I was young I thought the Tricoders on Star Trek were ugly and clumsy, but the ones on The Next Generation were sleek and awesome. But now that I’m older I prefer the combination of black and silver, of leather and metal over featureless beige or black.

It’s only been the last decade or so that I’ve gained a deeper appreciation for the fusion of aesthetic and functionality over minimalism.

So when I embarked on a project to create a controller for my “atomic” studio, I wanted to use a television remote of the approximate era as a base. I found a two-pack of this Magnavox eight-button remote on eBay and fell in love. I only needed the one, but it was a good deal. Over the course of this project, I’ve been inspired to use the other one to take a different approach to the same concept in a future project.

I knew that early wireless television remote controls (often called “clickers”) used sound. [Side note: we had cheaper televisions in my house and I was the “remote”] The only other one I had seen in person had a single button which hit a strike plate inside to create a tone that the TV could hear to go to the next channel and the next and so forth until coming around to the off position.

But opening this remote showed so much more. The circuit board inside had a coil and something like a speaker that aimed out the top of the remote. Next to each of the buttons was a capacitor of a different rating. By pressing one of the eight buttons the circuit routed through one of the capacitors which modulated the frequency that was transmitted.

I found myself admiring the elegance of using simple parallel circuits to provide such a range of inputs. I started to regret taking it apart.

Well… I’ve got two. One can be sacrificed in the name of SCIENCE!

The Parts

  • A vintage remote control (I’m using a Magnavox remote with eight buttons)
  • A piece of permaboard (If you have the skills, time, and resources to make a custom PCB, go for it. My biggest challenges in this project came from wiring and soldering good connections in this form factor)
  • A microcontroller (I’m using the Adafruit Feather 32u4 Bluefruit LE)
  • A Bluetooth module (I used the above feather which has both in one, but I could have used separate pieces)
  • Buttons (I’m using the “Soft Tactile Buttons” from Adafruit because the larger buttons I was using originally clicked loud enough to be picked up on microphone)
  • A battery of some kind
  • An on/off switch

And from the inventory:

  • Solder
  • Wire
  • Headers
  • Electrical Tape
  • A third hand or PCB vice (I used both at times)
  • Wire cutter
  • Wire stripper
  • Calipers and/or a good eyeball

Dissecting the Remote

I have a vague memory of this, but my parents once told me about the time we went to Red Lobster and I started coming up with names for the lobsters in the tank. My parents tried to subtly dissuade me, but I persisted. Then when the meal came and there were dead crustaceans (I didn’t know lobsters from crabs apparently) on the plates I started asking if they had killed [insert childhood names for critters] for this!? I was pretty upset.

The horrible lesson I was supposed to take away from that was to not name things that were about to be killed.

So I spent a few minutes with my screwdriver poised over the back of “Clicky” pondering what a monster I was about to become.

Then I remembered I had two and I hadn’t named the other one yet so I killed it instead.

Removing the circuit board was easy. I clipped off the leads going to the battery holder before using pliers to pull those out as well.

Determine Position of Inputs and Place

Luckily the circuit board from the original remote was almost the exact same size as a piece of permaboard I had lying around so I didn’t have to cut anything there.

To place the buttons I used a combination of precision measurement and less precise “eyeballing” the first row of buttons and the first button of the second row. After that I just counted the same spaces up and over to place the others.

The on/off switch was relatively easy. I didn’t want to cut into the case if I didn’t have to, so I used the front where the emitter had been. In the picture above I had the switch on the other side from the buttons, but luckily I re-checked placement before soldering it in because it was unreachable through the hole unless I moved it to the other side.

Choosing Placement of Microcontroller

This is where I started to get sad.

I had originally thought to place the microcontroller on the bottom of the board with the buttons and place it where it would sit in the original battery compartment, but if I did that the board would not be tall enough to be screwed into place by the stand-offs that also held on the back.

Next I tried placing it across the top of the board but it wouldn’t fit between the stand-offs.

So in the end I decided to place it such that the GPIO pins that I was going to use lined up between the buttons themselves. I did have to shift it slightly to the side to get the ground pin where I needed it as well.

Soldering It All Together

First thing I did was connect a single wire to all the “top outer” pins of the buttons on each side. Then I bent the wires around the bottom edge of the board and created a solder bridge. Then I ran another wire from one side of the switch to the ground bus.

Next I cut a strip of header pins to the right length and placed them halfway in the holes. This way I could run wires from each of the “bottom inner” pins of the buttons to their respective GPIO pins beneath the plastic part of the header.

After that I sat on the couch sobbing into my hands while alternately drinking a Rum and Coke to get over the trauma I put myself through with all those connections and wishing I had the time and skill to make my own PCB. I also swore to various supernatural forces that if this worked, I never do it again. [Not pictured]

Next I ran a wire from the middle position of the switch to the “enable” pin of the Feather.

Then I placed a single header pin where it needed to be and soldered it into place running a short wire from it to the existing ground bus.

Lastly I placed the Feather in place and soldered it down. In the picture above I hadn’t finished the right side, just the ground pin.

Drilling Mounting Holes

Once again using a combination of precise measurement and imprecise eyeballing I marked the placement of the mounting screws and used my Dremel and stand to drill the holes.


Aside from my soldering job, this is the ugliest part of the project right now. It’s just a hack of two different libraries: one from Adafruit (from their Adafruit BluefruitLE nRF51 library) and something else I found after too many Rum and Cokes and sobbing.

I beat at them both until they worked.


In the version here, the remote keeps sending the meta keys at times it shouldn’t. It doesn’t affect my usage so I haven’t taken the time to fix it yet.

Basically it scans the GPIO pins and maps them to a number on the keyboard. It sends that number while holding down some meta keys so that I can assign them easily to shortcuts within the studio software I’m using.

Assemble and Enjoy!

I put some electrical tape down over all the wires for protection. I connected the battery and placed it between the mounting stand-offs toward the top. By bending the battery leads around the one stand-off the thing stayed in place nicely.

Now I have a Bluetooth remote that sends a hotkey to my studio computer when I press a button. I can control the software without having to have a visible keyboard in view.


I have a few different ideas on where to take this next:

If I stay with the current system, I’d love to make my own board so the connections would be neater. I’d also update the code to be leaner and cleaner.

Another thought would be to use the other remote (Clicky!) as he was designed and build a receiver that would hear Clicky! and, using a microcontroller with HID capability, act as a keyboard for the studio computer.

CNC Mogul Introduction

A few weeks ago Mike Stone of CNCMogul.com visited the Milwaukee Makerspace.

Mike donated one of his machines to the space for testing and feedback as well as to use for the membership. It should also be mentioned that Mike is local and has his shop and distribution in Wales, Wisconsin.

Joe Rodriguez built one machine and I also put one together at our shop at home. So here are some thoughts on the process as well as some pictures. It isn’t a review as these machines haven’t really been put to the test as of yet. Time will tell.

The CNC Mogul is a general purpose 3 axis CNC kit that is relatively easy to put together and can be used for anything that you like. I’ll be using ours for routing and Joe wants to make a CNC plasma cutter with the one in the space. The basic kit is affordable and it uses the Makerslide as it’s building blocks. The stepper motors are run with a rack and pinion setup on aluminum tracks and gearing as well.

The controller is a Chinese Tb6560 Stepper Motor Driver Controller that is controlled via parallel port.

The power supply is a 24V 14.6 AMP 350W Max Power Supply.

The whole kit can be ordered online from 2ft X 3ft up to 4ft X 8ft. Custom dimensions are also available.

So here is the kit before assembly. This is a 3ft x 3ft kit that I will be building and using with a router.

This is the kit right before opening.

This is the kit right before opening.

Inside the kit there are a bunch of baggies with tons of little parts. You can look at the manual here

I’m assembling the quad rail kit. Once I start pulling things out of the box there is an amazing array of parts that explodes out of it. Fortunately each bag and part are well marked.

Everything that you need to build your own CNC controlled machine.

Everything that you need to build your own CNC controlled machine.


Everything is labeled really well.

Everything is labeled really well.

Everything is labeled really well.

Everything is labeled really well.

The kit took approximately 3+ hours to put together. The documentation in the manual is hit or miss. The pictures are extremely good and really help in putting this together. The accompanying text is also great for the first 1/3 of the manual and then you’re left to interpret pictures from there. There are a few questions that came up while building this but fortunately I was able to figure it out.

Little by little the parts are being built.

Little by little the parts are being built.

After the gantry gets built and all of the wires are connected it’s time to test. CNC Mogul recommends using Mach 3 for your machine control. And even has a few pointers on how to setup Mach 3 on their site.

I decided to go with LinuxCNC because it’s open source, I’m comfortable with Linux and it’s low cost (free). I loaded it up on a spare computer and after running through the instructions I was able to control the stepper motors on the Mogul.

What I had difficulty with is that the CNC Mogul uses an “A” axis and “Y” axis slaved together. LinuxCNC can do that but you can NOT test for that in the setting up process. You essentially tell the “A” axis to use the same step and direction pulses as the “Y” axis. I also inverted the “A” axis so they would turn the same direction when they are facing each other.

One of the other difficulties I had was figuring out the leadscrew pitch to enter into LinuxCNC. After some experimentation 1.27 inches per revolution seems about right but some more testing is needed.

Once you’re finished building the whole thing you need to mount it to something. I picked up a Craigslist find and the Mogul fit perfectly.

I generated some G-code from Vectric’s Vcarve Pro Zeroed each axis and started to cut.

I still need to put a waste board down and face it off flat and put some type of work hold-down system in place.

After the unit gets setup in the Makerspace the members will have access to the machine and we’ll see how durable it is.

The CNC Mogul with router mounted and ready to cut.

The CNC Mogul with router mounted and ready to cut.

Total time to build, test, and implement the whole system has been approximately 6 hours. There is still some testing and tweaking to be done as well as putting in a dust collection system.

If there are any questions feel free to ask me either on this post or in person. I’ll be putting this through it’s paces as well.

My 2nd test using the CNC Mogul with 2 types of router bits.

My 2nd test using the CNC Mogul with 2 types of router bits.

Laser Cutter Venting System, Version 5.0

Sometimes solving one problem creates a few new ones! As part of the Laser Cutter Room Reconfiguration, the exhaust system got an upgrade. A new, bigger, more powerful fan meant we needed a new way to control it. The previous system (Version 4.0) was a simple on/off switch. That just wasn’t going to cut it for this industrial grade blower. Tom G., Tony W., myself and others spent the holidays installing this new two-horsepower beast above the ceiling in the Craft Lab. Once it was hung from the roof joists with care, Tom got to work ducting it over to the Laser Cutter Room. Finally, when all the heavy lifting had been done and the motor drive had been wired up, all we needed was an enclosure for the switch.

The request went out on the message board. Pete P., Shane T., and I all expressed interest, but life got in the way and it soon became a matter of whomever got to it first would be the one to make it. I ended up devoting the better part of last weekend to this project (much more time than I anticipated) but I can honestly say I’m pretty happy with the result.


The goal was fairly straight-forward: make an enclosure for the switch Tom had already provided. It was a color-coded, 4-button, mechanical switch that had been wired to provide four settings: OFF, LOW, MEDIUM, and HIGH. The more laser cutters in use, the more air you’d need and the higher the setting you should choose. There’s four duct connections available for the three laser cutters we currently have.

There’s a saying: “Better is the enemy of done.” Truer words have never been spoken in a makerspace.

At first I wanted to build the enclosure out of acrylic. Then I remembered this awesome plastic bending technique that Tony W. and some others told me about. I found a video on the Tested website and got inspired. (If you don’t know about Tested, please go check it out. You’ll thank me later.) Unfortunately, my bends kept breaking and melting through, so after a few hours of tinkering I moved on.

Thankfully, we have a small cache of plastic and metal project enclosures on our our Hack Rack. I managed to find a clear plastic, vandal-proof thermostat guard. It looked workable.

I tried laser cutting it, but the moment I saw the plastic yellow and smoke, I knew there was probably some nasty, toxic stuff in it, so I moved to the CNC router. About an hour later I had my holes cut.

Then came the wiring. Up until this point I had been focused on the control box itself. Now I wanted to add a light!

No, two lights! Yeah!

One light to tell you when everything was off, and another that lit whenever the fan was in use. People could look at the lights from outside the room and instantly know if the fan had been left on. (It should be noted that the new fan, despite being twice as powerful than our last, is actually much quieter. Tom added a homemade muffler to the inlet of the blower and shrouded the whole contraption in 3″ fiberglass batt insulation. The best way to know if the fan is running is to open a slide gate damper and hear air being sucked in.)

OK, I totally got this.

Draw myself a ladder diagram and get out the wire connectors… Remember that I need to isolate the signals from each other so any button doesn’t call for 100% fan… A few more relays… Some testing… and done!

Wait a second… the motor drive doesn’t have a ground for the control signal.


Guess I can’t power it from the drive. I’ll just tie into the drive’s ground. Nope, that didn’t work.

I’ll read the motor drive manual. OK, it has a set of “run status” contacts I can monitor.
….and they’re putting out a steady 0.4 volts DC. That’s enough to light up a single LED! …except, no. It’s not lighting. Doesn’t seem to be any real current.

I’ll just use a transistor! That’s the whole point of a transistor!
….well nothing I tried worked.

I’ll build a voltage multiplier circuit!
….and this isn’t working either.

On Day 3 of this “little project” Ron B. made a comment about using a pressure switch of some kind.


We have a Hack Rack full of junk and I know there’s this old bunch of gas furnace parts. It couldn’t be that easy…


Yeah. So, three days (and a few frustrating epiphanies) later, this all came together. Press the beige button, get some air. Press the other buttons, get some more air. Any time there’s suction, the red light comes on. The indicator light is powered by its own 24 volt DC wall pack. The pressure switch has both normally open (N.O.) and normally closed (N.C.) contacts so it would be totally feasible to add another light at some point. The controller could display “OFF” or “SAFE” or whatever as well as “ON” or “FAN IN USE” or whatever. The text is just a red piece of paper with words printed on it, then holes laser-cut out to fit. We can trade it out with different words or graphics if we ever feel the need. I was just glad to have it done, so I called it. Better is the enemy of done, indeed.


You can learn more about the evolution of our laser cutter venting system on our wiki!

Lighting Control Upgrade!

IMAG3517In an effort to make the lighting control system more user-friendly, the original board-mounted switches have been replaced with a laser-cut zone map! Instead of looking up which zone number corresponds to a particular bank of lights, each location is now identified by a green LED pushbutton.  You can read more about the lighting control system and how it’s been evolving on our wiki: http://wiki.milwaukeemakerspace.org/projects/mmlc

Unexpected Detour

When I arrived at the space Sunday, I had planned to work on a circuit board design in DipTrace.  After I left, I had spent six hours rewiring a golf cart.  Allow me to explain…

It all started when I went to take the trash out.  I used the golf cart with the flatbed to ferry the cans out to the dumpster.  After emptying the cans, I rode back and decided to charge the cart’s batteries.  Tom and Rich had just returned from lunch and Tom suggested we swap out batteries instead.  While swapping them out, we decided to also rewire them.  While rewiring them, part of the cart broke.  There’s a small white plate under the driver’s seat.  It’s about 4″ x 6″, likely made of asbestos, and holds a series of copper contacts that a lever attached to the gas pedal slides over to select the speed of the cart.  And it broke in two when we tried to tighten fix a wire on it.

We had a few options: try to mend the old, brittle plate, replace it with something new, rewire the whole thing, or scrap everything out for a solid state motor controller.  Not wanting to adopt a new project or sacrifice a motor controller that could be better used elsewhere, I volunteered to try and fabricate a replacement for the broken part.

First I documented everything just the way it was.  I labeled wires, took photos, scribbled down notes, etc.  Next I went about removing the broken plate.  There was probably more rust than metal on those bolts.  Then I took a pair of digital calipers and a ruler and measured the locations and sizes of holes for each component.  I considered using the CNC router or drilling a plate by hand, but the laser cutter seemed to be a much faster and precise approach.  I drew up my replacement plate in CorelDraw and found a scrap of 1/4″ acrylic that matched the size and thickness of the old plate.  After some tinkering with the printer driver and a dozen passes with the laser, I had a copy of the original in plastic form.

The next few hours were spent migrating the old parts over to the new one and wiring it back in.  Right around 7:00 PM, I tied some batteries together and the thing leaped forward.  A few more tests and it should be as good as new.  Someone suggested that maybe the plate was asbestos to avoid heating issues so we’ll keep an eye on that too.