CNC Mogul Introduction

A few weeks ago Mike Stone of CNCMogul.com visited the Milwaukee Makerspace.

Mike donated one of his machines to the space for testing and feedback as well as to use for the membership. It should also be mentioned that Mike is local and has his shop and distribution in Wales, Wisconsin.

Joe Rodriguez built one machine and I also put one together at our shop at home. So here are some thoughts on the process as well as some pictures. It isn’t a review as these machines haven’t really been put to the test as of yet. Time will tell.

The CNC Mogul is a general purpose 3 axis CNC kit that is relatively easy to put together and can be used for anything that you like. I’ll be using ours for routing and Joe wants to make a CNC plasma cutter with the one in the space. The basic kit is affordable and it uses the Makerslide as it’s building blocks. The stepper motors are run with a rack and pinion setup on aluminum tracks and gearing as well.

The controller is a Chinese Tb6560 Stepper Motor Driver Controller that is controlled via parallel port.

The power supply is a 24V 14.6 AMP 350W Max Power Supply.

The whole kit can be ordered online from 2ft X 3ft up to 4ft X 8ft. Custom dimensions are also available.

So here is the kit before assembly. This is a 3ft x 3ft kit that I will be building and using with a router.

This is the kit right before opening.

This is the kit right before opening.

Inside the kit there are a bunch of baggies with tons of little parts. You can look at the manual here

I’m assembling the quad rail kit. Once I start pulling things out of the box there is an amazing array of parts that explodes out of it. Fortunately each bag and part are well marked.

Everything that you need to build your own CNC controlled machine.

Everything that you need to build your own CNC controlled machine.

cncmogul03

Everything is labeled really well.

Everything is labeled really well.

Everything is labeled really well.

Everything is labeled really well.

The kit took approximately 3+ hours to put together. The documentation in the manual is hit or miss. The pictures are extremely good and really help in putting this together. The accompanying text is also great for the first 1/3 of the manual and then you’re left to interpret pictures from there. There are a few questions that came up while building this but fortunately I was able to figure it out.

Little by little the parts are being built.

Little by little the parts are being built.

After the gantry gets built and all of the wires are connected it’s time to test. CNC Mogul recommends using Mach 3 for your machine control. And even has a few pointers on how to setup Mach 3 on their site.

I decided to go with LinuxCNC because it’s open source, I’m comfortable with Linux and it’s low cost (free). I loaded it up on a spare computer and after running through the instructions I was able to control the stepper motors on the Mogul.

What I had difficulty with is that the CNC Mogul uses an “A” axis and “Y” axis slaved together. LinuxCNC can do that but you can NOT test for that in the setting up process. You essentially tell the “A” axis to use the same step and direction pulses as the “Y” axis. I also inverted the “A” axis so they would turn the same direction when they are facing each other.

One of the other difficulties I had was figuring out the leadscrew pitch to enter into LinuxCNC. After some experimentation 1.27 inches per revolution seems about right but some more testing is needed.

Once you’re finished building the whole thing you need to mount it to something. I picked up a Craigslist find and the Mogul fit perfectly.

I generated some G-code from Vectric’s Vcarve Pro Zeroed each axis and started to cut.

I still need to put a waste board down and face it off flat and put some type of work hold-down system in place.

After the unit gets setup in the Makerspace the members will have access to the machine and we’ll see how durable it is.

The CNC Mogul with router mounted and ready to cut.

The CNC Mogul with router mounted and ready to cut.

Total time to build, test, and implement the whole system has been approximately 6 hours. There is still some testing and tweaking to be done as well as putting in a dust collection system.

If there are any questions feel free to ask me either on this post or in person. I’ll be putting this through it’s paces as well.

My 2nd test using the CNC Mogul with 2 types of router bits.

My 2nd test using the CNC Mogul with 2 types of router bits.

Gothic Arch Room Divider is Finished (Sort of….)

Sanctuary and More 102Silversark put together an amazing fashion show on Friday to showcase pieces she made inspired by church architecture and her trip to the Netherlands. This is something I cooked up for a background piece for the show.

The design work took several months and the actual creation of the piece took about a week, working 12-16 hours a day.  The frame is made from CNC routed aspen (thanks, Jason H.!) which is a rather “fuzzy” wood and required two days to hand finish, including the use of a set of needles files to smooth out the inset edges.

The acrylic panels were hand-stained with Gallery Glass stain and simulated liquid leading. They’re not quite finished yet, but I plan to complete the staining within the next week.

I’ll also be using this as a backdrop for various events including the Sustainability Summit coming up as well as the Concinnity sci-fi/gaming convention on April 5th. Additionally, this might be making its way to Embellishments in the Grand Avenue Mall for a window decoration.

I can’t wait to make another one!

Our 4′ X 8′ CNC Router takes a step forward!

With a lot of hard work from Ed H. and Steve P. our 4′ x 8′ CNC router has achieved a milestone, instead of the X axis sitting on the ground it has taken a leap up and is now mounted, ready for the Y and Z axis to be mounted to it along with the electronics and motion control.

beam mounted

The X-axis is ready to be milled here.

The X-axis is ready to be milled here.

Robbie is nearly weaponized….


router clamp in foam 2I am nearly done with a custom bracket for my Hitachi router that I will mount onto the end of our Kuka industrial robot arm.  I cut everything out in foam first to check  out the whole scheme and save wear and tear on the cutting bit.

flange for RobbieThe software chain I used to accomplish this was lengthy.  I designed all of these pieces in 3D in Solidworks, created a Solidworks 2D drawing, saved that as an AutoCAD drawing, brought that drawing into Vectric’s Aspire, then created machine code that the Makerspace CNC router used to cut the pieces from a sheet of foam.

finished clamp

Finally, once I was satisfied that everything would cut correctly, I switched to 3/4″ thick Baltic Birch plywood.  This is a “nicer” grade of plywood than the stuff that is used in day-to-day building construction work.  This wood is stronger by virtue of a greater number of plies, and it also looks nicer.  I happened to have a sheet left-over from a previous project, so it was all good!

plywood sheet

Staying Stocked Up

The idea was simple: make something to help keep track of our supplies so we know when we’re running low on the essentials.  After weeks of kicking the idea around and various rough doodles, this project finally took shape.  Two days after the first cut on the laser cutter, it was complete.


Made from multiple layers of acrylic, cardboard, and wood, the “Milwaukee Makerspace Consumables Super Analog Status Board” is a clipboard-sized device with nine sliders installed in enclosed slots.  Sliding the tabs right displays more green to indicate “full” or “lots” and sliding left reveals the red acrylic below to indicate “empty” or “low.”  The user can carry the board around the Space with them as they check on supplies and when done, a large hole centered at the top allows the board to be hung up and displayed on a wall.

The hardware holding the whole thing together can be loosened and the layers disassembled.  The cardboard insert that the text resides on can be swapped out should we decide to change the list of items we want to keep tabs on.  The supplies being tracked currently include:

  • Toilet Paper
  • Paper Towels
  • Hand Soap
  • Welding Gases
  • Welding Wire
  • Propane
  • Soda
  • Duct Tape
  • Painter’s Tape

A digital version may or may not be planned for future release.

MegaMax 3D printer lives!

After a year’s work designing, building, scrapping, redesigning, building, and working through software and firmware issues, the MegaMax 3D printer is now functional.   It has some common 3D printing issues like printed objects peeling up off the glass printbed.   Tweaked settings in Slic3r, ABS “juice”, and Aquanet hairspray have all been tested with moderate success in attempts to improve adhesion to the printbed.  Finally, have_blue gave me  a block of foam out of the Stratasys printer to try out and it seems to work better than the other methods and doesn’t require heating the bed!  Further experiments to be conducted post-haste.

More info on this project can be found here: http://wiki.milwaukeemakerspace.org/projects/megamax_3d_printer

MegaMax printing on foam from Stratasys printer.

MegaMax printing on foam from Stratasys printer.

A Clockwork…Room Divider

A 6 foot tall, clockwork gear inpired, tri-fold room divider

Hopefully, we can use this as a backdrop for events like the Art Jamboree.

I’ve been toying with the idea of room dividers for a while now. I don’t exactly have use for one, but I think they look neat and it’s basically a blank canvas. Drawing inspiration from my Clockwork Boxes, I decided that a gear motif would best suit the makerspace, thus giving me a new use for the piece: as a backdrop at events we participate in such as Art Jamboree and the various Maker Faires.

A picture of myself, Jason, and Matt, standing around the room divider

There are 3 of us in this photo. Really.

The actual screens were cut out with a large-scale CNC router, while the frame was ripped from 2×4′s, with a dado groove down the center for the screen to slip into. Thanks, Jason H.!!

Assembly went well, although there were a few hiccups.  The drill bit wasn’t long enough, so some minor splitting occurred at a couple of spots. The frame was slightly warped and so needed to be clamped and glued before being screwed together.

After allowing the paint to dry overnight, myself, Matt W., and Jason H. assembled this thing just prior to heading to the Art Jamboree at the Hilton in Milwaukee.

EDIT: I’ve just entered this into the Furniture Contest that Instructables is running. Click the link. Vote. Be thanked. :)

FEAR

 

I’ve updated Robert Indiana’s iconic sculpture “LOVE” for our times!  While “Love” may have been an appropriate sentiment from 1964 to 1970 when the 2D and 3D versions were made, I think that the revised text is more appropriate for the 2000′s and 2010′s. Fear is 8” tall and 4” deep, and while not a monumental outdoor sculpture, FEAR appears fairly sizable on a table top.

Fear, which is solid aluminum and weighs over 7 lbs, was cast last Thursday with quite a few other pieces.  The great thing about having an aluminum foundry at the Makerspace is that the whole thing cost about $7!  - $4 for propane, $1 for Styrofoam, and $3 for some Rotozip bits.  If FEAR were cast in bronze, it would weigh over 20 lbs, which would cost $200 for the metal alone.  As it is, we melted down old heat sinks, stock cutoffs and hard drive frames, so the metal is essentially free.

In the spirit of Indiana who made his own font, I drew FEAR up in Inkscape using Georgia Bold, but I increased the height of the Serifs a bit.  Shane helped me with the file manipulation and G-code generation (Thanks!), so I could use the CNC router to cut FEAR out of styrofoam.  I exported FEAR’s hairline thickness outline as .dxf so it I could bring it into CamBam to generate the G-code. The outer contour of FEAR was selected, and the following settings were chosen:

  • General -> Enabled -> True
  • General -> Name -> Outside
  • Cutting Depth -> Clearance Plane -> 0.125 (inches)
  • Cutting Depth -> Depth Increment -> 1.05 (inches)
  • Cutting Depth -> Target Depth -> -1.05 (inches)
  • Feedrates -> Cut Feedrate -> 300 (inches per second)
  • Options -> Roughing/Finishing -> Finishing
  • Tool -> Tool Diameter -> 0.125 (inches)
  • Tool -> Tool Profile -> End Mill

Identical settings were chosen for the inner contours of FEAR, with the exception of General -> Name -> Inside.   Then, I just selected “Generate G-code.”  Check out the real-time video of Makerspace CNC router running the G-code and cutting out the 1” thick Styrofoam (Owens Corning Foamular 150).

After cutting four 1” thick pieces, they were stacked and glued together.  I buried the foam FEAR in petrobond, and then attached Styrofoam sprues and vents.  For a more complete explanation of the quick lost-styrofoam casting process, check out this post.   Stay tuned for details of our next Aluminum pour, which will be in January in the New Milwaukee Makerspace!

 

MegaMax Lives!

The video shows the last few layers of the calibration cube “printing” at 414% speed (according to my LCD display).

The Bucketworks 3D printing meet-up on 8/12 paid off big-time!  Gary Kramlich helped me debug a problem that was preventing me from flashing the firmware on the controller board for the MegaMax 3D printer.  After a few tweaks I was able to get it moving.